第53章 孿生素數猜想報告會(下)
“唔,或許我可以上來展示一下?”
詹姆斯·梅納德說道。
季承頷首:“當然可以。”
“多謝。”梅納德點了點頭,隨後起身走上了演講臺,在黑板上寫下了他要質疑的式子。
【s_?={g∈gl_n(f_?): tr(g)tr(g')≡ 2 (mod?)}】
“當你將這個表示空間s_?與l函數零點分佈n(t,π)= ct log t + o(t)結合時,在誤差項的交叉部分:e_交叉(x)= e?(x)·e?(x)似乎會產生一個奇異性。”
“特別是在p接近?時,表示的跡與l函數的特徵值之間的對應關係可能會崩塌,這難道不會使得整個誤差估計失效嗎?”
在場的所有人看著詹姆斯提出的這個問題,頓時都倒吸了一口冷氣。
這個問題……
這個問題……
真是有夠刁鑽啊!
因為它足夠微小,卻又足夠致命!
如果真的如他所說的那樣,當p接近?時,表示的跡與l函數的特徵值之間的對應關係發生了崩塌,那麼也就意味著季承給出的那看上去無比完美而和諧的估計,其中卻夾雜著一個虛的結構。
就像是一幢高樓,中間有一段的承重結構卻是用泡沫所搭建,一旦出現了意外,整幢高樓都將會崩塌殆盡。
季承的眉頭一挑,隨後笑了起來。
真不愧是詹姆斯·梅納德啊。
二十一世紀最偉大的數論學家之一。
我的摯友,你沒有上一世的記憶,一上來倒是就給你的老朋友整出這樣一道問題。
真是讓人寒心啊。
不過嘛,你還是小看了你的老友我啊。
季承笑著道:“謝謝你,梅納德教授,毫無疑問,這是一個十分深刻的問題,直接命中了關鍵點。”
“然而,實際上,這也是為什麼我要在第一篇論文中特別構造那個看似多餘的權重函數。”
季承的回覆,就讓在場還在感慨於這個問題有多麼困難的人們愣住了。
什麼?
難道季承這句話的意思就是,他早就知道這個問題該怎麼解決了?
就連梅納德也感到了些許的意外,但隨後,他就露出了笑容:“我很期待你的回答。”